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WIND ANALYSIS BY CONDITIONAL RELAXATION

Albert Thomasell, Jr.
Meteorological Satellite Laboratory,

National Environmental Satellite Service, NOAA, Washington, D. C.

ABSTRACT. An objective wind analysis model for process­
ing and evaluating satellite-derived winds is described 
in detail. Examples of applications of the model illus­
trate its adaptability to problems involving wind evalua­
tion and the analysis and modification of wind fields.

I. INTRODUCTION

An objective wind analysis model developed at the Meteorological Satellite 
Laboratory provides a flexible research vehicle for processing and evaluat­
ing satellite-derived cloud motion wind vectors. The model is an adaptation 
of the Conditional Relaxation Analysis Method (CRAM) (Thomasell and Welsh 
1963), a general purpose procedure for the two-dimensional objective analysis 
of any continuous scalar variable.

Model development began with a study to utilize wind observations for 
specifying upper-level reference heights for the recovery of height sound­
ings from satellite measurements of radiance (Thomasell 1976a). Development 
continued with application of the model to the problem of determining the 
compatibility of satellite-measured low-level cloud motion wind vectors with 
rawins (Hubert and Whitney 1974). Further applications included a study to 
compare different objective techniques for calculating winds from cloud 
motion (Lemar and Bonner 1974); a study to define the wind field and the 
corresponding divergence and vorticity fields associated with easterly waves 
(Johnson 1976), using a dense network of low-level cloud motion vectors; and 
the development of an objective method for editing operational automated 
picture pair winds (Green et al. 1975, Thomasell 1976b).

This report describes the objective wind analysis model, illustrates some 
of its characteristics, and presents examples of typical applications.

2. THE ANALYSIS MODEL

A wind vector field is obtained by combining separate analyses of the u 
and v wind components calculated in spherical coordinates on the latitude- 
longitude grid described in appendix A. Analysis of a wind component field 
is accomplished in two steps. In one step, observations of the wind compon­
ent are used to correct a first guess field at gridpoints nearest the 
observations. These corrected gridpoints are denoted internal boundary 
points. For many practical applications a first guess field is not readily 
available; for these cases a useful estimate may be obtained from existing 
observations by the method described in appendix,.B. In the next step, new 
values are interpolated for all points in the first guess field not
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identified as boundary points, making use of the information in the boundary 
values and in the first guess field. The resulting analysis may be smoothed, 
if needed, by the smoothing operator described in appendix C (for a compre­
hensive description of smoothing filters see Shuman (1957) and Thomasell et 
al. (1966).

2.1 Correction of First Guess With Observations

In the first analysis step the first guess field of each wind component 
is corrected by corresponding components of the observed winds. At the 
location of each observed wind component, which in general does not coincide 
with gridpoints, a value is obtained by bilinear interpolation from the first 
guess field. The difference between the observed and the interpolated wind 
components is added to the first guess value at the nearest gridpoint. If 
more than one wind observation affects a given gridpoint the average dif­
ference is added. Gridpoint values directly determined from winds by this 
correction procedure are called internal boundary values.

More than one group of winds may be used in the correction process, and 
each group may be assigned a unique relative weight. In this case a weighted 
average difference will comprise the correction and will determine the inter­
nal boundary value at each affected gridpoint.

2.2 Interpolation of Analysis Between Boundary Values

In the second analysis step the gridpoints in the analysis gridpoint array 
that were not directly affected by wind data (the nonboundary points, denoted 
by the grid indices l,J), are next assigned new values by forcing them to 
assume values that satisfy the Poisson equation

V2<J>d,J) = F(I,J), (1)

where F, for forcing function, is defined as the Laplacian of the first guess 
field

F ( I, J ) = V2(f>FG ( I > J ) •

The parameter <J> may be u or v depending upon which wind component is being 
analyzed. This use of a Poisson equation is simply a device to utilize the 
curvature in the first guess field, through the Laplacian to allow nonlinear 
interpolation between observations. The accuracy of the interpolated values 
will depend upon the accuracy of the curvature of the first guess field.

Equation (I) is solved by an iterative relaxation procedure, during which 
the internal boundary values and the peripheral boundary values are held 
fixed. For each nonboundary point in the grid array, compute a new value of 
<t> according to

<(>(I,J)N - <t>(l,J)N_, + otR ( I, J ) N_ | (2)
if the residuaI
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R( I, J ) = V2<j>( l,J ) - F ( I, J )

is greater than a sufficiently small value e, the relaxation limit. The 
Laplacian is computed from the latest avai lable values of 4> for faster con­
vergence. The subscripts in (2) refer to the iteration number. The para­
meter a is the relaxation coefficient and must be less than 0.5 for conver­
gence. The iterations are continued untiI the residuals R are all equal to 
or less than e or until a prescribed number of iterations is reached. 
Typically, e = 0.01, a = 0.4, and the number of iterations is approximately 
40.

When the forcing function is set to zero, Poisson’s equation reduces to 
Laplace’s equation, the solution of which may be represented by a membrane 
stretched over the internal and peripheral boundary values. For this case, 
extrema can occur only at the boundary points. For a nonzero forcing func­
tion extrema can occur anywhere in the field.

2.3 Direction Dependent Pseudo Winds

Wind speed in general, tends to be more highly correlated along the wind 
direction than normal to it. This is more pronounced at higher levels where 
winds are stronger. A simple but effective method of incorporating this 
property of winds into the analysis model consists of calculating a pseudo 
wind upstream and downstream from each wind observation at a distance that is 
proportional to the observed wind speed. The pseudo winds are assigned a 
weight of 0.1 compared with 1.0 for observed winds. The pseudo winds com­
prise a distinct group of winds and may be used in the first guess correction 
process in the manner described in section 2.1.

3. AN EXAMPLE OF HIGH-LEVEL WIND ANALYSIS

In this section the importance of direction-dependent pseudo winds in high 
level wind analysis is demonstrated. Figure I (all the figures are presented 
in Mercator projection) shows the set of 300-mb rawins available over North 
America for February 23, 1975 at 1200 GMT. Figure 2 shows the same rawins 
(the larger barbs) and the pseudo winds calculated from them. For each 
raw in, two pseudo winds are generated, equal in speed and direction to the 
rawin, upstream and downstream from it. The displacement of the pseudo winds 
is proportional to the wind speed and in this case was set to one grid inter­
val (2.5°) per 100 kt.

The wind analysis constructed from the basic set of rawins (fig. I) is 
presented in figure 3. Figure 4 gives the wind analysis constructed from 
the rawins and pseudo winds from fig. 2. Because no first guess was avail­
able, it was necessary to generate one from the given data by the technique 
described in appendix B. The first guess was then smoothed with the filter 
discussed in appendix C. The analyses given in figures 3 and 4 were calcu­
lated using the procedures outlined in sections 2.1 and 2.2 and were smoothed 
with the same fiIter; however, in this final smoothing the boundary values 
defined by data were not allowed to be changed by the filter.
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Figure 1

mm

Figure 2.—The same rawins shown in figure 1 and the pseudo winds (smaller 
barbs) calculated from them.
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Figure 4. The wind analysis constructed (100 kt isotachs) from the rawins 
and pseudo winds shown in figure 2.
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Compared with figure 3, the analysis in figure 4 shows a marked improvement 
in the spatial continuity of the jet streams associated with the major trough 
located near the center of the figures. This improvement is due solely to 
the use of pseudo winds. The northerly jet stream to the west of the trough, 
which in figure 3 is depicted by a few isolated groups of 100-kt winds, is 
clearly defined in figure 4 as a continuous stream of winds 100 kt or greater. 
Similarly, figure 4 shows three distinct jet streams on the eastern side of 
the trough. The subtropical jet, which is not well defined at the 300-mb 
level, runs through southern Texas, along the gulf coast, and then through 
Georgia where it becomes diffuse. The primary polar jet is sharply defined 
and extends northeastward from Texas through Illinois and beyond. A short 
secondary polar jet extends from northeast Kansas into southern Wisconsin. 
According to Whitney (1975), this secondary polar jet is real and is a common 
feature for this synoptic situation. In contrast, in figure 3 only the prim­
ary polar jet is apparent and compared with figure 4 is erratically defined.

4. THE ROLE OF THE FORCING FUNCTION

As described in section 2.2, the forcing function is used to interpolate 
values at gridpoints between the boundary points defined by data. The 
accuracy of the interpolated values depends upon the accuracy of the forcing 
function. To illustrate the impact of the forcing function on interpolation, 
two analyses were constructed using identical sets of observations and grossly 
differing forcing functions. One analysis utilized a perfect forcing function 
and the other a no-information zero forcing function. The results show the 
extremes that may be obtained in interpolation accuracy.

For the purpose of this illustration, let the wind analysis shown in 
figure 4 represent the "true" wind field. The set of wind observations used 
for both analyses is given in figure 5. It was obtained from figure I by 
removing the winds lying within the indicated rectangle, a region of strong 
shear and marked curvature in the wind field associated with the major trough. 
The problem is to attempt to reproduce the "true" analysis given the specified 
winds and a forcing function.

The analysis procedure for this application uses the "true" analysis for a 
first guess. Boundary values are defined by correcting the first guess with 
the wind set given in figure 5. For one analysis, interpolated values are 
computed by solving equation I with F, the forcing function, defined as the 
Lap Iacian of the "true" analysis. For the other analysis, equation I is 
solved with F set to zero. No final smoothing is applied to either analysis.

The wind analysis constructed with the "true" or perfect forcing function 
is shown in figure 6 and the vector difference between it and the "true" 
analysis is given in figure 7. Within the limits imposed by the relaxation 
solution of equation I, figure 6 is seen to be a faithful reproduction of 
figure 4.

The analysis made with a zero forcing function is shown in figure 8 and its 
difference from the "true" analysis is given in figure 9. Substantial vector 
differences are seen throughout the entire analysis field in figure 9; in the 
data-void area centered on the trough, vector differences in excess of one
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Figure 5. The wind set used for demonstrating the role of the forcing 
function in analysis. Winds are excluded from the inscribed 
rectangle.

hundred knots exist. Interpolation with a zero forcing function tends to 
effect a smooth transition from one boundary value to the next, and cannot 
define real nonlinear features.

For applications where a good first guess is not available, interpolation 
more closely resembles the zero forcing function case than the true forcing 
function case. In general, interpolation error is reduced as the distance 
between boundary values is reduced. The use of pseudo winds is one valid 
means of achieving lower interpolation errors.

5. OBJECTIVE EDITING

This section describes an application of the analysis model to the problem 
of objectively editing sets of low-level (900 mb) cloud motion wind vectors. 
It also serves to illustrate a typical low-level wind analysis constructed 
from cloud motion vectors and a reliable first guess, the related vorticity 
and divergence fields, the effect of operating on a scalar field with a 
smoothing filter, and the modification of a wind field to conform to pre­
scribed vorticity and divergence fields.
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compared with the "true" analysis shown in figure 4.
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Editing consists of computing the vector difference between each wind 
observation and a colocated wind interpolated from a suitable analyzed field 
(base analysis), and discarding the observation if the magnitude of the 
vector difference exceeds a specified limit. The editing procedure may 
comprise one or more such comparison steps, where each step utilizes its own 
base analysis and discard limits. The procedure described here involves one 
gross error check and two fine error checks.

The discard limit is a variable that is calculated separately for each 
wind observation being checked. It is truncated by a prescribed minimum 
(Dmjn) and maximum (Dmax) value for each step. The discard limit D for a 
given observed wind speed S0, interpolated wind speed S|, and a prescribed 
maximum angular departure 3 between the two wind vectors is calculated using 
the law of cosines, by

D = [S* + Sj - 2SqS,cos3D*

with the constraint that

D . < D < D
min— — max

The parameter D represents the absolute magnitude of the vector difference 
between the observed wind and the interpolated wind when their angular 
difference is set to 3. The actual absolute magnitude of the vector 
difference between the two winds, |aV|, is then calculated and compared with 
D. An observed wind is discarded if

|AV| > D.

Thus the maximum acceptable angular departure of the observed wind from the 
base analysis may be controlled by 3 and the maximum acceptable difference 
in speed is controlled by Dmax. In the example that follows, the minimum 
discard limit Dmjn was set to 3 kt throughout; Dmax anc* ^ were specified 
separately for each of the three steps.

The complete set of low-level cloud motion wind vectors, for April 22, I976 
at 2000 GMT, processed by the objective editing procedure is shown in figure 
I0. The larger barbs indicate winds that were ultimately discarded by the 
procedure that is described below.

For the first editing step the winds in figure I0 are subjected to a gross 
check. The purpose of this check is to remove winds that depart markedly 
from a reasonable base analysis, under the presumption that such winds are 
erroneous, so they may not influence the subsequent fine error checks. To 
detect winds with gross departures, the base analysis must be independent of 
the winds being checked. This base analysis is constructed by using the NMC 
analysis shown in figure II (valid at 0000 GMT), as a first guess, and the 
latest error checked cloud motion winds, (in this case the I500 GMT winds 
for April 22, I976, shown in figure I2), and then applying the basic 
smoothing filter (appendix C). The resulting base analysis is shown in 
figure I3. For the gross check, the editing parameters are 3 = 90° and Dmgx = 
28 kt. The winds discarded by the gross check are given in figure I4.
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Figure 14. Winds from figure 10 that were rejected by the gross error check.
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Figure 15. The preliminary analysis for the first fine error check,
constructed by replacing winds in the base analysis of figure 13 
with the winds from figure 10 that survived the gross error check.
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In the next editing step all the winds shown in figure 10 are subjected to 
a fine error check. For this step a preliminary analysis is constructed by
correcting the base analysis shown in igure 13, which at this point 
represents the best available estimate of the wind field, with the winds 
from figure 10 that survived the gross check. To emphasize the difference 
between the base analysis and the wind observations, no interpolation or 
smoothing is done after the correction step. The resulting preliminary
analysis is shown in figure 15.

Winds in figure 15 that depart from their neighbors by a significant amount, 
as defined by the parameters Dm and $, are assumed to be in error and are 
discarded. To provide a basism?or objectively detecting erratic winds, a 
new base analysis is constructed by modifying the wind field in figure 15 so 
that winds which blend smoothly with the surrounding flow are left with 
little change while winds that depart significantly from their neighbors are 
replaced with new winds that blend with the flow.

The selective modification of figure 15 is accomplished by first recog­
nizing that isolated erratic winds create distinctive dipoles of four grid 
intervals in wavelength in the vorticity and divergence fields. Figures 16 
and 17 show the vorticity and divergence fields, respectively, associated 
with figure 15, and illustrate the small-scale features created by erratic 
winds. The noisy vorticity and divergence fields are then smoothed with a 
filter to remove short wavelengths. The resulting smoothed vorticity and 
divergence fields are given in figures 18 and 19, respectively. To obtain 
the desired filtered base analysis for this first fine error check, the wind 
field in figure 15 is then modified by Endlich’s (1967) method of altering 
wind fields to agree with the smooth vorticity and divergence. The resulting 
base analysis is shown in figure 20. All the original winds from figure 10 
are then edited with respect to this base analysis using the editing para­
meters Dmax = 15 kt and 6 = 30°.

The second fine error check is similar to the first. The winds surviving 
the first fine error check are used to correct the base analysis shown in 
figure 13 to obtain a second preliminary analysis. The vorticity and 
divergence of this second preliminary analysis are computed; their smoothed 
counterparts are used to alter the second preliminary analysis and generate 
a second base analysis (not shown) against which the winds of figure 10 are 
compared for the final edit. Here the editing parameters are D g>< = 8 kt 
and 3 = 19°: A final wind analysis, using the base analysis o^This last
step as a first guess, was constructed from the winds passing this final 
editing step (fig. 21). The final set of edited winds is shown in figure 22.

6. SUMMARY

The objective wind analysis model described here produces reasonable and 
useful wind fields. The examples demonstrate that the model is adaptable 
to many problems involving wind analysis, wind evaluation, and manipulation 
of the kinematic properties of wind fields. The wind model is particularly 
useful as a research tool for processing satellite-derived cloud motion wind 
vectors.
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Figure 16. Vorticity of the preliminary analysis shown in figure 15.
are 10

Un i ts

m.o o m.o too o m.o woo itvt too o m o m.o m.o uo.o m.o uo.o m.o wo o m.o uo.o ioj.o ioo o *vo to t «.o

Figure 17. Divergence of the preliminary analysis shown in figure 15.
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Figure 18.
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Figure 19. Smoothed divergence of the preliminary analysis shown in figure 
15. Units are 10 ^ sec \
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Figure 20. Base analysis for the first fine error check, constructed by 
modifying the preliminary analysis shown in figure 15 to con­
form to the smooth vorticity and divergence fields shown in 
figures 18 and 19 respectively.
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Figure 21. The final analysis valid at April 22, 1976 at 2000 GMT, con­
structed from the base analysis of the second fine error check 
(similar to figure 20) and the winds from figure 10 that sur­
vived the editing procedure.
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APPENDIX A

The Spherical Coordinate System

Analysis computations are performed with respect to the spherical 
coordinate grid system shown in Figure A-l. The grid points are identified 
by the indices I, J, where I increases downward and J increases to the 
right. The latitude and longitude of the upper left corner gridpoint are 
0S and Xg, respectively. Latitude 0 increases upward and longitude X 
increases to the left. Grid spacing is defined by A0 in degrees latitude 
and by AX in degrees longitude; corresponding values of grid spacing in 
terms of distance on the earth's surface are Ay and Ax.

Latitude and longitude are related to the grid indices by the 
equations

0(1) = 0s - (1-1) A0 

and X(J) = Xs - (J-l) AX

Further,

AX(0) = HJL AX Cos 0 
180

and

AY = BJL A0 
180

where R is the radius of the Earth.

In this system divergence is calculated by 

DIV(I,J ) = [u(I,J+l)-u(I,J-l)]/2Ax(0)

+ Cv(I-l,J)-v(I+l,J)]/2Ay 

- v(I,J) TAN 0/R, 

and vorticity by

VORT(I,J) = Cv(I,J+l)-v(I,J-l)]/2Ax(0)

- [u(I-l,J)-u(I+l,J)3/2Ay 

+ u(I,J) Tan 0/R,

where u and v are the wind components with u positive eastward and v 
positive northward.
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APPENDIX B

Generation of First Guess Fields

For many applications of the wind analysis model, particularly those 
involving research, a first guess of the wind field is not readily available. 
For these cases a useful first guess field may be generated from the set of 
wind observations by the following procedure: The procedure is applied to
wind components and produces a separate first guess for each component.

1. Assign the value of each observation to the gridpoint nearest 
it. For multiple observations at a gridpoint assign the 
weighted mean.

2. Assign a weight of I to each gridpoint with an observed value.
All other gridpoints are initially assigned a weight of zero.

3. Scan through the gridpoints by rows or by columns and calculate 
a new value for each gridpoint not assigned a weight of I. The 
new value equals the weighted mean of values at the gridpoint 
and its four nearest neighbors. Assign each gridpoint that 
receives a new value a weight of 0.01.

4. Repeat step three 50 times.

The procedure produces a scalar field with maximum and minimum values 
at those gridpoints nearest observations. Values at the remaining gridpoints 
define a smooth, non-discontinuous surface connecting the extreme value 
gridpoints.
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APPENDIX C

Smoothing Filters

Spurious unwanted small-scale features in a scalar field <P may be 
eliminated or suppressed by application of the smoothing operator

0(1,J) cf>(I, J )+B0(I,J ) 
1+B (C-l)

where B is a parameter controlling the degree of smoothing and 

0(1,J) = [0(1+1,J)+0(I-l,J)+0(I,J+l)+0(I,J-l)]/4.

A filter that eliminates wavelengths less than some critical value 
without materially affecting longer wavelengths may be constructed through 
the repeated application of equation C-l. The characteristics of the 
filter are determined by the values of B used for each application of the 
operator. The standard filter used in this report comprises the application 
of equation C-l three times with B = 1, 1, -1/2, respectively. This filter 
suppresses features of two- to four-grid-intervaI wavelength.
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